Preliminary communication

On the nature of Brune's complex

M.I. BRUCE and T.A. KUC Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received January 14th, 1970)

In 1962 Brune and coworkers¹ described an unusual complex which they formulated as (I), containing an uncomplexed ferrole moiety, in which the iron atom is electron-deficient. This complex would be the sole example of this interesting heterocyclic system, although other five-membered rings containing iron, with a lower degree of unsaturation, are known, *e.g.*, the fluorinated compounds $C_4 F_6 Fe(CO)_4$ ² and $C_4 F_8 Fe(CO)_4$ ³, and the diketo complex (II)⁴. On the other hand, many examples of ferroles stabilised by bonding to a second Fe(CO)₃ group (III) are known.

We have re-examined complex (I), with a view to discovering more about its ring system. In analysing our results we have taken account of two additional possible structures, viz. the butadiene—Fe(CO)₃ (IV) and the cyclobutadiene—Fe(CO)₃ (V).

The Brune complex was readily synthesised from the anion $[Fe(CO)_4]^{2-}$ (obtained by stirring Fe(CO)₅ with sodium amalgam for 2 h) and dimethyl dichloromuconate. Chromatography on Florisil gave fractions similar to those described in the original

J. Organometal. Chem., 22 (1970) C1-C2

communication¹, and the complex was finally purified by sublimation (90–100°/0.1 mm), to give a bright orange-yellow solid, m.p. 56–58° (lit.¹ 57°). The infrared spectrum showed bands at 2084m, 2052vs, 2022vs, 2009vs, and 1972w cm⁻¹ in the terminal carbonyl stretching region, and $\nu(acyl CO)$ appeared at 1722 cm⁻¹. The proton NMR spectrum (C₆ F₆) showed resonances at τ 3.36s (β -CH; lit.¹ τ 3.46) and 6.18s (CH₃).

Clearly, the $\nu(CO)$ region of the spectrum contains more bands than expected for a simple Fe(CO)₃ group, and the spectrum resembles that found for complexes of type (III). The presence of an Fe₂(CO)₆ group was also suggested by the mass spectrum, the highest ion being at m/e 448, with other ions arising by successive loss of carbonyl groups at m/e420, 392, 364, 336, 308, and 280. All these ions were the most intense of clusters with an isotope pattern corresponding to the presence of two iron atoms. Finally, analysis confirmed the formula C₄H₂(CO₂Me)₂Fe₂(CO)₆ (Found: C, 37.3; H, 1.69. C₁₄H₈Fe₂O₁₀. Calcd.: C, 37.4; H, 1.78; mol. wt. 448. C₁₁H₈FeO₇ (I) calcd.: C, 42.84; H, 2.60%; mol. wt., 308).

We therefore conclude that the complex obtained by Brune and his coworkers must be reformulated as (III, $R = CO_2 Me$, R' = H). The remote possibility of rearrangement to the isomeric complex (III; R = OCOMe, R' = H) was eliminated by comparison with an authentic sample⁵.

REFERENCES

1 E. Bayer, H.A. Brune and K.L. Hock, Angew. Chem. Intern. Ed., 1 (1962) 552.

- 2 R.L. Hunt, D.M. Roundhill and G. Wilkinson, J. Chem. Soc. A, (1967) 982.
- 3 T.A. Manuel, S.L. Stafford and F.G.A. Stone, J. Amer. Chem. Soc., 83 (1961) 249.
- 4 R. Case, R. Clarkson, E.R.H. Jones and M.C. Whiting, Proc. Chem. Soc., (1962) 256.
- 5 H.W. Sternberg, R.A. Friedel, R. Markby and I. Wender, J. Amer. Chem. Soc., 78 (1956) 3621.

J. Organometal. Chem., 22 (1970) C1-C2